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This article surveys the mathematical or physical aspects of algebraic 
realizations, fibre bundles, supermanifolds, super Lie groups, and super 
Lie algebras. 

This survey concerns some aspects of  algebraic approaches to certain 
physics problems; more specifically we review, comment on, or analyze the 
following aspects: (i) algebraic realizations, (ii) fibre bundles, (iii) super 
manifolds, super Lie groups, super Lie algebras. Since (i) and (ii) are older 
companions than (iii), which is relatively new to physicists, their discussion 
will be very brief. The third aspect will be our main interest, and it will be 
mathematical  in nature. 

1. S O M E  ASPECTS OF ALGEBRAIC REALIZATIONS 

I would like to emphasize that a new way of looking at an old question 
is often very fruitful. To be definite, I would mention the problem of spin- 
wave theory in solid-state physics. Take the simple Heisenberg model of  a 
ferromagnet. Holstein and Primakoff  [1] were the first ones who attempted 
to solve it quantum mechanically, leading to the spin-wave concept. Their 
method was criticized by F. Dyson [2] who attacked the problem with more 
elaborate techniques. Unfortunately, Dyson's  method involves the use of  a 
nonhermitian hamiltonian. The relation between these two different ap- 
proaches, clouded by details, was hard to see. Yet this situation is easily 
clarified if we take the viewpoint of  algebraic realizations, i.e., if we consider 

1 An expanded and modified version of an invited talk given at the Special Session on 
Nonassociative Algebras and Their Connections with Physics, at the 749th meeting 
of the American Mathematical Society, Purdue University, October 29, 1977. 
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Holstein-Primakoff's approach to be equivalent to the following algebraic 
realization of  spin operators on lattice sites 

S} +) = (2s)l/2a~+(1 - a~+ad2s)V 2 

S}-> = (2s)1/2(1 - al+al/2s)l12az 

S~ ~) = - s  + az+ az (1.1) 

and Dyson's approach to be equivalent to the realization 

S[ +) = (2s)l/2a~ + 

S~ +> = (2s)1/2(1 - az +a,/2s)aZ (1.2) 

S~ ~> = - s  + al+ al 

Once we realize this, the relationship between the two approaches becomes 
very transparent [3]. From this point of view, it is also natural to suggest 
alternative approaches that may be more convenient or appealing [4]. This 
is also an example that shows that an algebraic approach does not have to 
be confined to the area of particle physics (like Weinberg's nonlinear realiza- 
tion [5] in chiral symmetry). Algebraic realizations of groups or algebras of 
this sort are worthwhile approaches that need to be explored more exten- 
sively, at least before a rigorous algebraic quantum field theory becomes 
computationally practical. A specific realization may not contain all the 
linear representations, yet the purpose of a realization in this approach is 
not to arrive at all possible representations but to fix the physical interpre- 
tations at the realization level. An interesting mathematical question is the 
following: we know that for a Lie algebra La and an s V, the second 
cohomology group H2(~ c#, V) corresponds bijectively to the equivalent classes 
of Aa-extensions (see, e.g., [6], vol. 2, p. 855) by V. But what can we expect 
from a realization instead of a representation under some cohomology theory 
involving the realization only? This question has never been asked, so far 
as I know, and would be an interesting one if it turns out to be nontrivial. 

2. FIBRE BUNDLES IN PHYSICS 

Fibre bundles have been around for quite a while in mathematics, yet 
their appearance in physics literature was relatively recent. I consider Andrzej 
Trautman of Warsaw to be one of the earliest campaigners in this direc- 
tion [7]. It is no mere accident that it takes a general-relativity theorist to 
get enthusiastic about fibre bundles since they provide very natural (and 
beautiful) settings for attaching further mathematical structures to a space- 
time manifold. The mathematical structures may be algebraic in nature or 
of  a group nature, or simply topological in context. So the fibre bundle is 
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a very flexible tool for physicists as well as for mathematicians. It becomes 
increasingly clear that many problems in physics reveal their clear-cut 
structures when they are stated in terms of fibre bundles. The best example 
is the beautiful paper by C. N. Yang on gauge fields [8]. In particular, the 
theoretical understanding of  magnetic monopoles can be channeled so ele- 
gantly to the concept of  connections on a fibre bundle (with U(1) as the 
structure group). In such a setting, the quantization of a monopole corre- 
sponds to the first Chern class of  the fibre bundle. It has also become clear 
in recent years that the transition from a classical dynamic system to quantum 
mechanical ones can be formulated in terms of fibre bundles. This approach, 
due to B. Kostant and J-M. Souriau, is usually referred to as geometric 
quantization [9]. We shall give a very brief sketch of this process. Because 
the phase space of a classical dynamic system is an even-dimensional mani- 
fold, a nondegenerate closed two-form (syrnplectic form) can be introduced 
to make it a symplectic manifold. I f  M is the configuration space of a classical 
system, then the cotangent bundle T*(M) has an even-dimensional bundle 
space (the phase space) on which we can assign a local coordinate system 
{q~, Pi}. The set {q~} describes the local coordinates on M and {Pi} describes 
the cotangent space, at a point in M, in the sense that every cotangent vector 
can be written in the form ~,'~=1 P~ dq~ (where n - dim M). The local co- 
ordinate neighborhood in T*(M) is ~r-1 U if its corresponding one in M 
is U. The symplectic form on T*(M) can be taken to be, in rr -1 U, 

= ~ apt A dq ~ (2.1) 
t = 1  

where ~r is the projection from T*(M) to M. By introducing a globally 
Hamiltonian vector field ~:s on T*(M) for each f , f '  ~ C~~ 1~), we can 
define the Poisson bracket 

where 
[f,f 'lPB -- a,(~,, ~:,,) (2.2) 

,=1 \~-~ ~ ,  ~ P ~  (2.3) 

This makes C~ ~) a Lie algebra (with respect to the Poisson bracket). 
A symplectic form co, in general, is said to be integral if the integration 

of oJ over any closed two-surface (in M) yields an integer. This is also stated 
sometimes as the condition that the de Rham cohomology class [oJ] e H2(X, II~) 
is integral, where X is the symplectic manifold. When this is true, Weil's 
theorem says that there exists a complex line bundle ~ on M with a Hermitian 
metric g and a compatible connection V such that the curvature form 
curv (~, V) = oJ. The space of all sections of  ~, Sec ~, forms an infinite- 
dimensional complex vector space. When equipped with the inner product 
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( , ) induced by g, the space of all sections is the pre-Hilbert space that 
yields a Hilbert space 9f' after completion. For some technical reasons one 
actually considers, instead of the line bundle ~ - {L, rr, M, C, C~}, the line 
bundle ~ ---_ {L~, ~4, M, C~, Cn} where C~ is C with zero deleted and L~ is 
the bundle space whose fibres are C~. 

Denote by !~(L~) the set of all C~-invariant real vector fields t7 on L~ 
such that s annihilates the canonical one-form of the connection V and X 
annihilates the real-valued function on L~ defined by l~--> (/, I). Further, we 
denote by N(M) the set of all globally hamiltonian vector fields on M (i.e., 
X__] co is exact for X e  ~(M)). Then the following row-exact commutative 
diagram which, by the so-called five-lemma, shows that ~ is a Lie algebra 
isomorphism between C~ R) and ~(L~). Thus to each classical variable 

0 �9 IR �9 ~(L ~) �9 ~(M) �9 0 

II II 1 II II 
0 , IR ,, C~176 �9 :~ ' (M)  ,, 0 

E C~(M, R) there corresponds an element ~(gb) that acts as an operator on 
the Hilbert space See L (after completion). Since c~ is a Lie algebra iso- 
morphism, the Poisson bracket is mapped into the Lie bracket naturally. 
Although the actual technical detail is more complex, the use of fibre bundles 
in this context probes into the nature of the physicist's concept of quantiza- 
tion procedure. It not only questions the precise definition of quantization 
but also calls for the nontrivial use of some modern mathematical techniques. 
Cohomology also enters into the picture; for example, equivalent complex 
line bundles (on the same base manifold) belong to the same class in the 
first cohomology group (~t la Qech) with coefficients in C~, and the co- 
homology classes of symplectic forms ~o are just the Chern classes of L. It 
is also worthwhile to note that by Kirillov's orbit method of group repre- 
sentation, geometrical quantization also sheds light on the relation between 
the irreducible unitary representation of an invariance group of a classical 
system and the quantization process. 

In the context of general relativity, there are many recent efforts in 
considering nonsymmetric connections [7, 10]. However, it is not generally 
known that Einstein himself once took an interest in such an approach in 
1949; his paper "The Bianchi Identities in Generalized Theory of Gravita- 
tion," which appeared in the Canadian Journal of Mathematics (1950), con- 
tains the following comment that reflects his attitude then: 

The relativistic theory of gravitation bases its field-structure on a 
symmetric tensor g~k. The most important physical reason for 
this is that in the special theory we are convinced of the existence 
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of a "light-cone" (g~ dx  ~ dx  ~ = 0) at each world-point, which 
separates space-like line-elements from time-like ones. What is 
the most natural way of generalizing this field-structure ? The use 
of a non-symmetric tensor seems to be the simplest possibility, 
although this cannot be justified convincingly from a physical 
standpoint. But the following formal reason seems to me impor- 
tant. For  the general theory of gravitation it is essential that we 
can associate with the covariant tensor g~k a contravariant g~, 
through the relations gisg k~ = 3~ k = g~fgSk (normalized cofactors). 
This association can be carried over to the non-symmetric case 
directly. So it is natural to try to extend the theory of gravitation 
to non-symmetric g~-fields. 

There is, though, an important difference between Einstein's considera- 
tion and the so-called Einstein-Cartan theory [7]. Einstein considered a 
nonsymmetric metric from which a nonsymmetric linear connection is 
defined. Yet, for a more general consideration one may assume that the 
metric and the connection are independent of  each other. This leads to the 
extra degree of freedom that was suggested [7, 10] to accommodate the 
spin of  a particle. 

Conceptually the various types of connection--linear, Cartan, sub- 
ordinate structures--can best be understood in a natural setting only in 
terms of  a principal fibre bundle, as formulated by C. Ehresmann [11]. 
Further possibilities of generalization or specialization of  the notion of  
connection may have to depend largely on the basic structure of a fibre 
bundle or its generalization. Physics may require these generalizations 
before they are carried out for purely mathematical interest. 

3. INTRODUCTORY REMARKS ON GRADED LIE ALGEBRAS 

3.1. Some Notations. Historically, graded Lie algebras were first for- 
mulated by Milnor and Moore in 1965 in connection with their study of  
Hopf  algebras [12]. Before we plunge into a full discussion of the "super" 
objects, let us introduce terminologies and notations. The field K is assumed 
to be not of characteristic 2. Often we restrict the field to ~ = • or C. 
The vector spaces when graded with respect to 7/will be written V = @ ~  V~. 
The term "super" will be used for 7/2 - 7//27/ gradings. Thus a "super" 
vector space has only two "components," i.e., V = Vo @ V1. We recall 
that, in general, 

"degree" ofv  = Iv[ = j if v ~ V i (homogeneous) (3.1) 

For  a graded algebra A = @ A~, 

A ~ A j  c A~+j (3.2) 
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and commutativity requires 

xy = (-- 1)lxllylyx (3.3) 

for homogeneous elements x, y e A. For inhomogeneous elements, simply 
consider each homogeneous term separately. 

For a graded Lie algebra (to be abbreviated GLA) L we have, by (3.2), 

[Ls, Lk]' = Ls+k (3.4) 

where [ , ]' denotes graded Lie multiplication. The graded version of the 
antisymmetry relation in GLA is just (3.3), i.e., 

[x, y]' = - ( -  1)txti~l[y, x]' (3.5) 

The graded Jacobi identity is 

( _  1)l~i i,i [[x, y]',  z]' = 0 (3.6) 
CYC 

where cyc means a cyclic sum (by permuting x, y, z cyclically). As to "deriva- 
tions," degrees are assigned to them. By definition, D is a graded derivation 
of degree j if 

D: Ai -+ Ai+s (3.7) 
and 

D(x.y) = (Dx).y + (--1)lDttXix.(Dy) (3.8) 

An endomorphism also has a "degree" which puts a restriction on the 
morphism: its restrictions send 

V,--+ V,+ s, n~77 (if77-graded) (3.9) 

for an endomorphism of degree j. Denote by End <j> V the set of all endo- 
morphisms of degree j (on V) and 

End# V - (~  End (j> V (3.10) 
J 

Naturally, End# V can be made into a GLA by defining 

[ x , y ] ' - x o y -  (-1)t~tlyiyo x (3.11) 

Similarly, one can make any graded associative algebra a GLA this way. 
When End# V is considered a GLA with [ , ]' defined by (3.11), we denote 
it by gr V. 

A homomorphism between GLAs requires grade preserving besides the 
usual conditions. Thus a representation of (GLA) L is just a GLA-hom 
from L to gr V, for a given graded vector space V over the same ground field. 

3.2. A Physical Example. To avoid confusion, we note that the use of 
the modifier "super" is different in "supersymmetry" (in physics) and "super 
Lie algebra" (in mathematical context). In particle physics, the former use 
accommodates the space-time symmetry (i.e., the inhomogeneous Lorentz 
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group or the spin-statistics symmetry which puts bosons and fermions on 
the same footing), while the term "super Lie algebra" (or manifold or Lie 
group) implies Z2-grading. Hence supersymmetry consideration does not 
necessarily imply the use of 7/2-grading even if GLA is used. Conversely, 
there is also no reason to limit the application of SLA to supersymmetry 
considerations. 

Since there are many excellent review articles on applications of SLAs 
or GLAs to particle physics [13, 14], I shall give only a brief discussion of a 
simple example, a local quantum field theoretical model in particle physics. 
This model can be shown to be the same as the minimal spinor extension of 
the Lie algebra of an inhomogeneous Lorentz group (this extension is an 
SLA). Consider first the model of three fields: a complex scalar field ~ (a 
boson), a two-component spinor field ~ (a fermion), and an auxiliary com- 
plex scalar field x (a boson). Suppose that we now look for a transformation 
(the so-called supersymmetry group transformation) T that can transform a 
scalar field (a boson) into a spinor field (a fermion). The simplest relation 
we can write is this: 

T~(gp(x)) = ~A~ba(x), A = 1, 2 (3.12) 

where A is the (two-component) spinor index and fA is a space-time inde- 
pendent anticommuting (in all components) spinor coefficient. We shall also 
adopt the conventional notation for spinor indices: A is attached to the 
conjugate spinor space. If  we assume that the auxiliary scalar field is related 
to the first-order space-time derivatives of the spinor field through the 
supersymmetry transformation, then the simplest form is 

Tr = - i~B(au)aBa"(~ba(X)) (3.13) 

where Ix = 0, 1, 2, 3 is the space-time index, ~" - 3/Ox., and (u.)a~ is defined 
by the Pauli matrices oi for i = 1, 2, 3 and ~0 - 1. Finally, since the super- 
symmetry transformation turns the spinor field into scalar fields, the simplest 
possible relation is 

T~(~bA(x)) = i2~B(U.)ni~gu((~(X)) + 2~AX(X) (3.14) 

To find the algebraic properties of the supersymmetry transformation we 
evaluate 

(re o Tr)4(x) = i2gA(rr.)Ah~B~U4(X) + ~A~AX(X) 

which yields 

Furthermore, 

[Tr T~]~(x) = i2(~A(Uu)Ah~ b -- ~A(,r,)ni~)~uq~(X ) (3.15) 

[T~, ~"] = O, etc. (3.16) 
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But (3.15) does not have a simple appearance as an algebraic relation. To 
achieve this, let us write T in terms of some new two-component space-time 
dependent spinors QA and Q~ (as generators of the algebra to be derived): 

T~ = adj {i(~Q + cc)} when operated on 

i.e., 

Tr = i[r + OA~,~, ~(x)] (3.17) 

Then we obtain the basic algebraic relations 

{Qa, QB} = 2(g,)A~P ~ (anticommutator) (3.18) 

{Qa, Q~} = 0 (anticommutator) (3.19) 

[P~, QA] = 0 (commutator) (3.20) 

where we write pu for - iO ", the generator for space-time translations. 
On the other hand, let us consider a possible extension of the Lie 

algebra of the inhomogeneous Lorentz group L. The generators are defined 
by 

[M~,~, Map] = --i(~uaM, D + ~TvoMua - ~7,,,,Mva - ~aMuo) (3.21) 

[ M , ,  Pal = -i(~l,aP~ - ~TvaP,,) (3.22) 

[P,, P~] = 0 (3.23) 

where ~7,a is the fiat (Minkowski) metric. I f  we want to construct an extension 
of L by joining it to a two-component spinor type generator Qa and its 
conjugate ~)B, we can write the commutators by the definition of a spinor." 

[M,v, aa]  = -lz(cr,~)aBaB (3.24) 

where ~,~ = i�89 ~,~]. To close this algebra in the simplest way possible, 
we put 

(QA, ~)/~} = 2(eu)aBP" (3.25) 

{Qa, Qn} = 0, [Pu, QA] = 0 (3.26) 

which are seen to be identical to (3.18)-(3.20). This shows that the algebra 
defined by (3.24)-(3.26), when joined by the Lie algebra of the inhomogeneous 
Lorentz group, yields an extension which is an SLA, to be denoted by ~r 

We have a 712-grading 

~e- = ~0 �9 ~ (3.27) 

with 
QA e ~:~ and M~, P~ e ~:o (3.28) 

Finally, we want to say something about realization. Since in the inhomo- 
geneous Lorentz group P~ and M "~ can be realized as differential operators 
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in space-time, namely - iO ~ and i(xU8 v - xV8U), one expects by the right- 
hand side of  (3.25) that something can be done about the spinor-type element 
QA of  the algebra. It is obviously not possible to do this directly. Hence it 
is necessary to enlarge the underlying space-time to a larger space V which 
contains anticommuting "coordinates" (or Grassman algebra) v ~ with 

(v ~A, v qB} = 0, A, B = 1, 2 (3.29) 

In other words, the vector space now becomes a "super" (i.e., Z2-graded) 
space: 

V = Vo �9 V1 (3.30) 

with x" ~ Vo and v ~, 3 ~ V1. Therefore the super vector space V is eight- 
dimensional. On this space we have the realization 

QA = - - i ~ / ~ #  A (3.31) 
and 

O~i = i ~ / ~  "i + 2t*B(cr~)~i~ ~ (3.32) 

The two Casimir elements in this algebra are the usual P~'P~, and a Pauli- 
Lub~inski type element K~,~K ~'~ with 

Ku~ = Pt~,K~j (3.33) 
where 

Kv = e~,~auM'~aP" - �88162 A, ~)B] (3.34) 

and Ev,e, is the totally antisymmetrical permutation symbol. 

3,2. Mathematical Examples. As we know, there are a number of 
mathematical structures leading naturally to GLAs or, in particular, SLAs. 
We shall dispense with specific models and mention only a few examples 
of  a general nature. 

First we mention the example given at the beginning of Section 3.1, 
where a g r a d e d  vec tor  space  leads to a GLA by considering End~ V as dis- 
cussed there. A graded associative algebra also leads naturally to a GLA, 
as mentioned there. 

Next, we give the example of the F r 6 l i c h e r - N i j e n h u i s  a lgebra  constructed 
from a given vector space V. Denote by An(V) the vector space of all alter- 
nating (n + 1)-linear mappings from V "+1 to V, and let 

A ( V )  =- @ A " ( V )  (3.35) 
n = 0  

Define a product S by 

( f  -A g)(uo . . . . .  up+q) = ~ (sgn cOf(g(u,,(o ) . . . .  , u,,(p)), uo(p+ l), . . . ,  u,m,+q)) 
f f  

(3.36) 
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where f e AP(V), g ~ Aq(V), and ( f -~  g)~ AP+q(V) as defined before, o de- 
notes permutations of {0, 1 . . . . .  p + q} subject to the conditions o(0) < �9 �9 
< ~(p) and ~(p + 1) < . . .  < o(p + q). The vector space A(V) then be- 
comes a GLA with respect to the graded Lie product 

[f, g]' -- f ~ g -- ( -  1)~qg ~ f (3.37) 

It  is instructive to consider at this point the case where f ~  At(V). Then 
f :  V x V-+ V (alternating and bilinear) and 

If, f ]'(u, v, w) = 2{f( f(u,  v), w) + f ( f ( v ,  w), u) + f ( f ( w ,  u), v)} 
(3.38) 

But char K # 2, as we assumed in the beginning. Hence (3.38) shows that 
the Fr61icher-Nijenhuis GLA reduces to a Lie algebra if and only if 
[ f , f ] '  = 0. 

The third example is the fact that a GLA L, when equipped with a 
coboundary operator d, passes its "grading" to its eohomology algebra. 
That is, let d be a derivation; then we have 

d[x, y]" = [dx, y]' + ( -  1)lallXl[X, dy]' (3.39) 

and 

d o d = 0 (3.40) 

The p-cocycles are defined, as usual, by dx = 0 and x ~ L~. Denote by Zp 
the set of  all p-cocycles. Then 

Z - -  ( ~ Z ~  c L (3.41) 
p G L A  

Similarly, the p-coboundaries are defined by x e L~ such that x -- dy for 
some y ~ Lp_ lal. Let By be all p-boundaries. Then 

B - @ By c L (3.42) 
lo G L A  

and in fact B is an ideal of L. Therefore, finally, the p-cohomology group 

H~,(L) -- Zp/B~, (3.43) 

yields the cohomology algebra of L (with respect to the coboundary operator 
d) 

H(L) - @ H~,(L) (3.44) 
p 

which is a GLA. 
The fourth example we want to mention is a formalism discovered in  

the study of infinitesimal deformations of complex manifolds. 
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Denote  by z the local complex coordinates. Let  oJ and ), be, respectively, 
the vector-valued p - fo rm and q-form with 

1 o),~ d5 jx A . . .  A dSs~ 
~  E j~...j, 

1 
(a = 1 . . . .  , n) (3.47) 

1 
ya - ~ ~ ~akl...~q dSkl A . . . A dSkq (3.48) 

t 

where j - {jl . . . . .  j~} and k - {kl . . . . .  k~}. Further ,  if  we let 

1 
8b) '~ -- ~ ~ 8by%l...k, d2 ~I A " '"  A d2k~ (a, b = 1 . . . . .  n) (3.49) 

[,o, el' = ~ (,oo ^ ~ov~ - (-1)~o~,~ ^ a~,o0}~ (3.50) 
g,b 

then it is obvious that  [ , ]' is bilinear, and it can be shown (by direct 
calculation) that  

D ,  r ] '  = - ( -  1)'~ o,]' (3.51) 

( -  1),'[oJ, [),, p]']' + ( -  1)a,D,, [p, ~o]']' + ( -  1),a[p, [~0, r ] ' ] '  = 0 

(3.52) 

where p is an r-form. Equat ions (3.51) and (3.52) are just (3.5) and (3.6). 
In fact, it is also easy to verify 

~[o~, ~,]' = [0o~, y]'  + ( -  1)p[~o, ~y]' (3.53) 

where 8 = ~2 = ~ dg~(~/82~). That  is ~ is a graded derivation of  degree 1, as 
defined by (3.8). We ment ion that  if  oJ ~ HI(M,  (9) is an infinitesimal deforma- 
tion, where (9 is the sheaf of  sections of  the holomorphic  T(M) ,  then it 
can be shown that  

[o~, oJ] = 0 (3.54) 

Our  next example concerns the appearance of  an SLA structure in a local 
Lie algebra [see A. A. Kirillov, Uspekhi Mat. Nauk, 31 (1976), 57]. 

Consider  a real vector bundle ~: = {E, rr, M, F} where the base space 
M is a manifold  and F is a real vector space. Denote  by F(~) the set o f  all 
smooth  sections o f  ~. The topology on F(~:) is the usual topology o f  uniform 
convergence of  F and its derivatives on a compact  set. The  set F(~) is said 
to have a local Lie algebraic structure if I'(~) has a (ordinary) Lie algebraic 
structure such that  the Lie multiplication 

(xl, x~) ~ [x~, x~], x, ~ r(~) (3.55) 
is cont inuous with respect to both  X~ and X= and such that  

supp [X~, X2] ~ (supp xl ~ supp X2} (3.56) 



516 Yutze Chow 

where supp means " suppor t  of ."  As a part icular  example, consider a sub- 
manifold M of  ~2,, with a global coordinate  system xl . . . . .  x, ,  y l , .  �9 Y,. 
Let  ~: - {M x •, rr, M, R} be the trivial real line bundle on M. Clearly, 
I'(~) is just  C| I f  we define the Lie multiplication by the Poisson bracket,  
i.e., 

[f' g] - 2 {(~f/Ox,)(~g/~y,) - (Of/Oy,)(Og/Ox,)} (3.57) 
5 = 1  

for  f, g e C~ then r (~)  has a local Lie algebraic structure with respect 
to the Lie multiplication as defined. For  a real line bundle on a manifold 
M ", it is obvious that  P ( f ) =  C~ Take  a local coordinate  system 
x ---- (x l , .  �9 x , )  on M and write 0~ - ~/Ox, and also 

a j -- 0 l l . . .  0{,, J -- ( j ~ , . . . , j n ) , j ,  e 7]+ (3.58) 

In particular,  if M c R -, then it can be shown that  every local Lie algebraic 
structure in F(M),  which is just C~(M) in this case, is defined by 

[f, gl = ~ h,k0/'~, k (3.59) 
j , k  

where f ,  g, hj~ E I ' (M).  In fact, 

hjk(x) = 0 if IJl > l o r  Ikl > 1 (3.60) 

with IJl = Y2=~j, .  Therefore,  (3.59) is effectively 

[f, g] = ~ a'(x)(fO,g - gO,f) + ~ b"(x)O,fOyg (3.61) 
t t,J 

I t  can further  be shown that  the vector a and the bivector b defined by 

a = ~ d(x)O, and b -= ~ biJ(x)O, A Oj (3.62) 
t t,Y 

together  determine a unique local Lie algebraic structure if the following 
necessary and sufficient conditions are satisfied. 

s = 0 (Lie derivative) (3.63) 

(Sb) A b = a A b + �89 A b) (3.64) 
with 

8c = ~ ~e%q'"',~,~ A . . .  A 0,, (3.65) 
iO,il, . , . , i  1 

for  any (r + 1)-vector e in general. 
An interesting fact is that  the following "b racke t "  operat ion defined on 

multivectors yields a G L A  structure. 

[b, e]' ~ ~(b A c) -- (~b) ^ c -- (--1)lblb A (~c) (3.66) 

and the grading is effected by assigning the grade (r - 1) to any r-vector. 
In the particular case of  a bivector  c has grade 1. We note that  [b, el' is 
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independent of the local coordinates used, although 3e and 3b both depend 
on local coordinates. 

Finally, we mention the "Whitehead product" (see, e.g., Hu, Homotopy 
Theory, p. 138) between homotopy groups (at the same point x0 of a topo- 
logical space X), which sends 

[ ,  ]': 7rm(X, Xo) x rr,(X, Xo)->m~+,~_l(X, Xo) (3.67) 

and satisfies 

o ~ ( -  1)m'[[x, y]', z]' = 0 (3.68) 

where x ~ ~rm(X, xo), y ~ rr,(X, Xo), and z ~ %(X, Xo). The symbol [ , ]' 
denotes the Whitehead product. Furthermore, 

[x, y]' = ( -  l)mn[y, x]' (3.69) 

However, (3.67) yields a wrong grading, i.e., it is not exactly (3.4). Equation 
(3.68) is just the required graded Jacobi identity. Yet (3.69) differs from 
(3.5) by a minus sign. All these can be satisfied by defining a modified White- 
head product, to be denoted by [ , ]": 

Then (3.69) becomes 

and (3.68) becomes 

Ix, y]" =- ( -1)m- l[x ,y]  ' 

[x, y]" = - ( -  1) (m - 1)(n- 1)[y, x]" 

(3.70) 

(3.71) 

e y • e l  ( _  1)(m-1)(p-1)[[X, y]',, Z]" = 0 (3.72) 

From (3.71) and (3.72), it is obvious that by grading Zrm in the following way 

deg (rrm) = m - 1 (3.73) 

we now have a GLA structure satisfying conditions (3.4)-(3.6). In fact, it is 
interesting to look into "grading translations." Suppose L satisfies (3.4)- 
(3.6). But we now change the grading by rewriting 

Lm =- L'm+t (3.74) 

where t is a fixed integer. Then by (3.4) 
! 

LmL', c L~+,-t  (3.75) 
Next we define 

[x, y]" = ( -  1)mr[x, y]' (3.76) 

for x ~ Lm and y ~ L~. This redefinition of the graded Lie product does not 
affect (3.75) but changes (3.5) into 

[x, y]" = - ( -  1)mn+t[.,'c, y]" (3.77) 
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However, the graded Jacobi identity retains its original form, (3.6). This 
shows clearly that (3.77) becomes (3.5) if t is even, and it becomes 

[x, y]" = ( -  1)mn[x, y]" (3.78) 

if t is odd. Equations (3.70)-(3.72) are just the special case where t = 1. 
Notice that in this particular case (3.75) and (3.78) are satisfied by the usual 
Whitehead product. 

An interesting application of the Whitehead product, on homotopy 
groups, to crystal defects is the discussion by V. Poenaru and G. Toulouse 
in their preprint, "Topological Solutions and Graded Lie Algebras" (Ecole 
Normale Sup6rieure, Paris, 1977). 

4. SUPERMAN~OLDS 

The fact that a (ordinary) Lie group is a differentiable manifold and the 
fact that to each (ordinary) finite-dimensional real Lie algebra L there exists 
a local Lie group whose Lie algebra is isomorphic to L suggest that the 
appearance of GLA indicates the possibility of introducing the notion of 
supermanifolds and super Lie groups (to be abbreviated SM and SLG, i.e., 
they are Z2-graded objects). 

4.1. The Berezin-Leites Version of Supermanifolds. The concept of a 
supermanifold was first introduced by Berezin and Leites in their 1975 
paper [16] although the notion of a super Lie group was laid down earlier 
by Berezin and Kac [17] and to a certain extent by M. Lazard [18]. However, 
the Berezin-Leites paper gives only a sketchy outline of the theory. The 
appearance of B. Kostant's most comprehensive work [19] not only brings 
the theory to a higher degree of rigor and unification but also provides a 
solid foundation for further development. For this reason, our discussion of 
Berezin-Leites' work will be very brief. 

The key idea is, under the Z2-grading, to accommodate both commuting 
and anticommuting elements in an algebra and to relate the algebraic struc- 
ture to an ordinary differentiable manifold in a certain way. This suggests 
that either fibre bundles or sheaves may do the job by means of fibres or 
stalks. Berezin-LeRes indicated in their paper [16] that they take the former 
route, i.e., fibre bundles. Take a manifold M p (of dimension p); then the 
commutative associative algebra C~(U) arises for each given coordinate 
patch U on M p, where C~(U) is the set of all smooth K-valued functions 
on U. For each patch U, let there be a correspondence 

hu: U--> Av (4.1) 
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where ArT is algebraically isomorphic to C| This yields the even part 
(i.e., grade 0 in Z2-grading). The odd part (i.e., grade 1) is obtained by con- 
structing the exterior  algebra with q generators 

{~:1 . . . .  , G }  --- ~ ( 4 . 2 )  

with At: as the ground ring. Denote this algebra by 

U, . , (U)  - A~v[~ ] (4.3) 

To formalize the definition, Berezin-Leites define a supermanifold as a pair 
{M p, ~v  q} satisfying the following conditions. 

1. For each coordinate patch U on M p, there exists a super K-algebra 
llp.~(U) and a K-homomorphism 

hv:  llp,~(U) --> A~.w)[~: ] (4.4) 

such that 

hv(y , )  = x,, hv(~:~) = ~ (4.5) 

with y and ~: generating llv, q. 
2. For any two patches U c V, there is a grade-preserving epimorphism 

pv,v: 11;,q(U) --~ 11p,q(V) (4.6) 
such that 

ht~ = hv o pvv (4.7) 

3. {~tp,~(U), ptr,v}v,v -- ~M q has a fibre bundle structure with base mani- 
fold M and fibre space ~t;,q. 

The Berezin-Lettes paper does not make clear whether the formalism 
is consistent for some technical reasons. Their general approach reveals 
that it is more adequate to formulate a supermanifold in terms of presheaf 
or sheaf in the initial step than to take a straight fibre bundle approach. 

Table 1 shows the contradistinction between the Berezin-Leites version 
of supermanifold and a presheaf of K-algebras on a manifold M. 

T A B L E  1 

Berez in -Le i t e s  Vers ion P reshea f  o f  K-Algebras  

A coordinate patch U 
U ~ 1.tp.q(U) 
P~:.v : Zl,,.q( U) -+> llp.q(V) 

such  tha t  
h v  = hv  o p v v  

(hence  p v . v  = Id and  

Pv,w o p u , v  = Pu ,w  

for  pa tches  U c V ~ W) 

A n  open  set U 
U~--~ Srz 
ptr,v: SV  --+ S v  

(restr ic t ion mapp ing )  
such  tha t  
pv ,v  --- Id  (Id -- ident i ty  mapp ing )  

and  pu , v  o pv ,w  .= p u w  

f o r U c  V c  W 
opel l  opel l  
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It is important to note that a presheaf is a contravariant functor from 
the category of open sets (with inclusion maps as morphisms) to the category 
of abelian groups (with group horns) or, in particular, to the category of 
K-algebras (with algebra homs). On the other hand, Berezin-Leites formalism 
indicates the structure of a covariant functor. This is one of the obvious 
discrepancies. 

4.2. Prelude to the Kostant Version of Supermanifolds: Canonical Pre- 
sheaves. Since Kostant formally makes use of the so-called canonical 
presheaf in defining a supermanifold, we recall a few elementary notions in 
sheaf theory. Essentially, a presheaf or sheaf assembles local information to 
global information in a very elegant way. For  convenience, we shall specialize 
in presheaves or sheaves of K-modules. 

First, we define a presheaf As we mentioned before, it is essentially 
a contravariant functor from the category of open sets (and inclusion maps) 
of a topology space X to the category of K-modules (and K-horn 0. That  is, 

- {Sv, p vv} ~.v is a presheaf of K-modules on X (a paracompact Hausdorff 
space) if for every open set U of X there corresponds a K-module Su such 
that for any open set V c X and U c V there is a map (the "restriction 
map") 

Pvv: Sv ~ Str (4.8) 

such that, for any open set W = V = U, 

%w 
S W " S v 

~UVOPV'W=PUW or ~ ~ cornrn /[,,~ (4.9) ,vv.... / V 

S U 

and Or:r: = (Id)s~. For  two presheaves ~ -{S t r ,  ptrv} and 5 e' --- {Sb, p'vv} 
of K-modules, on X, a presheaf horn {4,v} v is a collection of K-homs q~c~: Sv --+ 
S~ such that 

~U 
S U �9 S u 

1 l PUV comm PUV 

v 
S v ,. S v 

*v 

(4.10) 
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An important  example of  presheaf is given by 

n: U ~ C~(U) 
and by 

o~,: c ~ ( v )  -+ c ~ ( v )  
defined by 

A presheaf can be depicted as 

pvv: F~>'flu 

Su__l E 

- -  Ix 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

The set Sv (perhaps with an algebraic structure and related continuity 
conditions) will be referred to as the stalk over (an open set) U. 

In the definition of Sv, in a presheaf, U is assumed to be an open set; 
Sv is not defined if U is not an open set. Yet, in analogy to a "fibre," it is 
useful to introduce some object that resembles Sx. To do this, we shall soon 
introduce the notion of direct limit, which makes it possible for us to define 
the concept of  stalks of  a presheaf at a point x. 

For  convenience, we introduce here the useful notion of a local fibre 
space. ~ = {E, ~r, X} is a local fibre space over X if ~r (the projection map) is 
a local homeomorphism as well as a (globally) continuous surjection from 
topological spaces E onto X. Each fibre 7r- 1 x is referred to as the stalk of 
at the point x ~ X. A sheaf ~: of  K-modules over 2" is defined as a local fibre 
space {E, ~, X} --- ~: such that each stalk zr- 1 x is a K-module whose operations 
(addition and scalar multiplication) are continuous on E. Similarly, for a 
sheaf of  K-algebras, the algebraic operations must be continuous. The 
sections of a local fibre space, or of  a sheaf, are defined in the usual way. 

The correspondence between a sheaf and a presheafis established through 
the concept of  an equivalent relation. Let {Sv, pr:v} -- 5r be a presheaf of  
K-modules on X. Construct the disjoint union, 

5P~ = ~.] S~, Nx = all open sets of  x (4. t 5) 
" UENx 
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An equivalence relation ~ on 5e~ is defined, for  a ~ St, and b ~ Sv with 
U, V~N~,  by 

a ~ b iff 3 W E Nx such tha t  W c U n V and pwva = pwvb 
(4.16) 

Deno te  the equivalent class of  a by [a]. Then  [a] is called the germ o f  a a t  x. 
The  collection of  all equivalent  classes in 5e~, for  a given point  x E X, is 
called the direct limit o f  S#~ when considered a K-module.  

Symbolically,  denote  

S:~ - {[a]la ~ 5P~} = lim St, (conventional  notat ion)  (4.17) 
x ~ u  

The K-module  structure o f  S:~ is defined by  means  of  the mapp ing  

px, v: St, -+  5:~ with p~, t,: a ~ [a] (4.18) 

Addition in 5:x is defined by 

[a] + [b] -- p~.w(pwt,a + pwvb) (4.19) 

and scalar multiplication by 

Cons t ruc t  now 
~c[a] = px.t,(xa) (4.20) 

5:~ - [,..J 5:x (4.21) 
XEX 

Then 5:~ can be endowed with the structure of  a local fibre space by first 
defining the project ion m a p  rr: 5:~ -+  X by 

~r: 5:x ~+ x (4.22) 

Next,  we topologize the space 5:~ by using the collection of  all sets o f  
the fo rm 

E~ - {px.va[x ~ U}, a ~ Str (U open in X)  (4.23) 

as a basis o f  a topology.  I t  is easy to see that  ~r is a local homeomorphism as 
well as (globally) continuous.  Besides, each stalk 5~ is a K-module,  and the 
mappings  ([a], [b]) ~ [a] - [b] and [a] ~+ K[a] are bo th  continuous.  Thus,  
5:~ is indeed a sheaf  of  K-modules  on X, to be called the sheaf of  germs of  5:. 

We now define a canonical  presheaf. Let  5 e = {St:, pvv}t,,v be a presheaf  
on X. 5:  is a canonical presheaf if, for  any open cover  {G}~ of  an open set 
U (of  X),  the following condit ions are satisfied. 

1. I f  a, b ~ St, and pt~,tra = ptqtrb for  all i ~ / ,  then 

a = b (4.24) 

2. I f  {a~}, is a set o f  elements such that  for  a~ ~ StT, 

p~,,v,a~ = pt~,v,a: ( U~: =- U~ t~ Uj r ;~ ) (4.25) 



On Algebras, Manifolds, and Fibre Bundles in Physics 523 

for all i, j ~ / ,  then 3b ~ Sv such that 

pt~,tTa = a~, all i e I (4.26) 

An important example of a canonical presheaf is (4.11), the canonical 
presheaf of all smooth N-valued functions on X (or all holomorphic C- 
valued functions). Another important example is the following: given a 
continuous surjection = from topological spaces E onto X, the collection of  
all local sections forms a canonical presheaf. 

For  any U open in X, denote the set of all sections over U by 

F t r -  {X[continuous maps X: U--> E, ~ o X = Ida} (4.27) 

and for U c V open in X, define the restriction maps by 

pvv: Pv -+ Y~ with X~-> X[v (4.28) 

It is easy to check that conditions (4.24) and (4.25) are satisfied. 
In particular, we take a presheaf 5 e (of sets, or with possibly some 

algebraic structures) on X. Then r (5~ ) ,  the set of all sections of 5 e~ (the 
sheaf of germs of 5e), is a canonical presheaf. To be more precise, P(Sf~) - 
{F(U, 5e~), P~v} is defined by 

~7: U~-> Ptz (4.29) 
and 

P~:v: Yv -+ P~: (sending X~-~ X[~:) (4.30) 

for U c V both open in X. P(Yg) is often called the presheaf of sections of 
the sheaf of germs of 5(. We note that this situation is actually of a general 
nature; P(~) can be defined clearly for any sheaf or canonical sheaf 
instead of 5~.  In particular, we are interested in the case of sheaves or 
canonical sheaves of K-modules or K-algebras. In such a case, we need 
algebraic operations on sections. Addition of sections is defined by 

(X + X')X = X(X) + X'(X), x c U (4.31) 

and scalar multiplication by 

(•X)X = K(X(X)) (4.32) 

and (for K-algebraic cases) the algebraic operation by 

(X" X')x = X(x) ' x ' (x )  (4.33) 

It can be shown that, for any canonical presheaf 5~, the presheaf mapping 

~,: 5 ~ -+ P(5 ~ )  (4.34) 

sending 

Str ~ Pv (4.35) 
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for any U open in X, is a bijection. In particular, if  5 a is a presheaf of  
abelian groups, then 7 is a presheaf isomorphism. As F(5 t'~) is a canonical 
presheaf, (4.34) says that to every canonical presheaf S a one can associate a 
local fibre space whose canonical presheaf of  sections is just the original 5~. 
Equation (4.34) also amounts to a one-to-one correspondence between 
sheaves and canonical presheaves. Hence we see that every sheaf is the sheaf 
of  germs of some presheaf. 

4.3. The Kostant Version of Supermanifolds. Let M p (or simply M)  
be a C ~~ manifold of  dimension p. Denote by Coo(M) the canonical presheaf 
of  smooth R-valued functions on M. We now impose a 772-grading (i.e., 
"super")  on C~ in the trivial way: every element in the commutative 
R-algebra C~176 is even (i.e., grade 0). 

Let d be a canonical presheaf of  supercommutative algebras (with a 
unit element) on M such that d is presheaf-homomorphic to C~ i.e., 
if Av is the stalk over U (an open set in M), then 

h V 
A v ,- C~176 

PUV comm V 

AU h U '- C=(U) 

(4.36) 

where {htr}v is the collection of algebra-homs that forms the presheaf-hom. 
The grading in Atr will be written 

Av = Atro @ Au1 (4.37) 

where At:0 and Avl denote respectively the even and the odd graded parts 
of  At:. To avoid confusing "odd elements" (which means elements of  Ar~l) 
with "odd  number of  elements", we use a hyphen as indicated if necessary 
(though odd is seldom used in the latter sense in this text). For  convenience, 
we denote the image of the presheaf-hom, from d to C~ by a tilde. 

htr: a~--> a ~ for a e A~ (4.38) 

Hence, clearly, due to 772-grading we have 

(At:0 ~ = {0} (4.39) 

We need the notion of "fahtors" of  Av: A subalgebra of  Ate0 with lr: (the 
unit of  ArT) is called an even-faetor (of ArT) if it is algebraically isomorphic 
to C~ A set (of odd-elements) a~ e At71 (i = 1 . . . . .  n) is algebraically 
independent if al �9 .. a ,  r 0. Then a subalgebra of  At~ is called an odd-factor 
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(of odd-dimension q) if it is almost generated by a set of q algebraically inde- 
pendent odd-elements ("almost generate" means "together with lv they 
generate"). 

We note that if Dtr is an odd-factor of  odd-dim q, then the algebraic 
dim is obviously 

dim De = 2 q (4.40) 

since the generators (besides 1 u e Ate0) are all odd-elements. 
The notion of  "factor"  will be introduced now: for a nonempty open U, 

a pair of subalgebras {Eu, De} is a splitting factor of Atr (or {Ee, De} splits 
Au) if Eu and Dv are respectively even- and odd-factors of Av such that 

a | b ~-~ ab (4.41) 
defines an algebra-iso 

Ev | Du ~ Au (4.42) 

An open set U (of M) is said to be ~r (or simply U splits) if At~ has 
a splitting factor. The odd-dimension of  U is defined to be that of  the odd- 
factor, i.e., if {EtT, Du} splits Atr with dim Dv = 2 q then odd-dim U = q by 
definition. It is obvious that q is a unique positive integer if U splits. We 
now define (M ~, eft), where ~ is a canonical presheaf defined by (4.36), as 
a supermanifold of dimension (p, q) if every nonempty open set is covered 
by some ~r open sets of the same odd-dim q. We also say that the 
supermanifold has even-dimension p and odd-dimension q. 

We can immediately define the tangent (vector) and the tangent space 
of a supermanifold formally. Let A =- AM (i.e., let U -~ M which is open by 
definition) and ( )* be the dual space. Then u ~ A* is said to be a (super) 
tangent o f  A at x ~ M if 

u'(ab) = (u'a).b(x) + (-1)lalS(x).u'(b) (4.43) 
and 

u"(ab) = (u"a). b(x) + 8(x). u"(b) (4.44) 

where u = u' + u" (with ]u"[ = 0, lu'] = 1) and a, b ~ A. The tangent space 
T(M, d ) x  at x e M of the supermanifold (M, ~ )  is the space of all (super) 
tangents of A at x. It is not difficult to see that 

(T(M, d)x)o ~ T(M)x (4.45) 

and 

dim T(M, ag)x = dim (T(M, d)x)o + dim (T(M, ar = p + q 
(4.46) 

An important aspect of a "manifold" is the coordinate system. For a 
supermanifold, the definition of its even part is straightforward: let U be 
open in M and let re eAr~o (i = 1 . . . .  ,p). Then {re} is an even-coordinate 



526 Yutze Chow 

system (ECS) in U if U is an ordinary coordinate patch and the functions 
{r, ~} form the coordinate maps of the ordinary coordinate system (ordinary = 
in the usual differential geometry). We list the following properties of  an 
ECS: 

1. I f  {r~} is an ECS in U, then there exists a unique even-factor Cr: 
containing {r,}. 

2. U admits ECS {r,} iff U is an ordinary coordinate patch. 
3. If{f~},f ~ C~~ i = 1 , . . . ,  p, form a coordinate system of functions, 

then there exist even elements {r,} such that r , -  = f~. 
To define the so-called odd coordinate systems (OCS) requires a dif- 

ferent approach. From the discussion of a splitting factor, one can expect 
that an OCS must be tied up with q algebraically independent odd-elements. 
This feeling will be confirmed. The passage from Atr0 to C~176 for ECS, 
is uneventful due to (4.36) and (4.39), which make the same approach 
impractical for OCS. However, we can use the notion of sections of  fibre- 
bundles; we are particularly interested in defining an equivalent class assigned 
to a point x ~ M, like the germs given in (4.17) in terms of (4.15). The union 
in (4.15) is a disjoint one. Hence our construct should conform to this fact. 
Since an OCS deals with odd-elements and since a 2 = 0 for any odd-element 
a in Atr, we see that Avl  must be nilpotent (of nilpotency index 2). Thus the 
set 

Ntr - all nilpotent elements in Av (4.47) 

plays an important part in the process. Nr: is clearly a graded (two-sided) 
ideal of A t~; it contains Atrl and has the following useful properties: 

1. Nv is the ideal generated by A w  if U splits. 
2. If  a supermanifold has odd-dim q, then for any nonempty open U 

(Uu) q # 0, (Ntr) q+l = 0 (4.48) 

3. For  any open U 

0 > No- J"~ A~ h~> C~o(U) > 0 (4.49) 

is an exact sequence. 
4. If  Ev is an even-factor of Av, then 

Av = Nv @ Ee (semidirect sum) (4.50) 

We next define 

Zu,x - { f i f e  C~176 = 0}, Zx = ZM,x (4.51) 

N j  - (Nv)J/(Uv) j+ l (4.52) 

Equation (4.52) is defined to establish the "disjointness" of  different Nv j 
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( j  = 1 , . . . ,  q). Ident ify Atr /Nv with C~(U) .  Then  the 37~ j fo rm a module  
over  C~(U) .  Denote  

F j  =- ~VJ/Zx.N j with N j = ArM j (4.53) 
and 

F j - [,..) F j  (4.54) 
x~.M 

In part icular,  if  x e U, we have 

F J  ~-r NuJ/Zt~,~. N j ,  j = 1 . . . . .  q (4.55) 

Then  {F j, ~r, M} is a smooth  R-line bundle with F j  being the fibre at  x. 
Clearly 

dim F j  = qCj (algebraic) (4.56) 

I , FJ �9 F! 

(4.57) 

Define the quot ient  m a p  

(Ntr)j _+ (Utr)j/(Utr)j +1 (4.58) 

which induces the m a p  

rj :  (N~r) j --> P(U, F j) (4.59) 

where F(U, F j) is the set o f  all sections over  U in the fibre bundle F j. Then 
we define an OCS (odd-coordinate system) as a set o f  odd-elements  {at}, 
i = 1 . . . .  , q, in Av such that  r q ( a l . - - a q )  r 0 for  all x e U, i.e., ~ yields a 
nowhere-vanishing section of  F q, over U. This leads immediate ly  to the fact 
tha t  the a lgebra  a lmost  generated by an OCS is an odd-fac tor  o f  Av. I t  can 
be shown [19] that  i f  U splits and if q odd-elements  q~ a lmost  generate the 
odd-factor ,  then {a~} is an OCS in U. Hence OCS exists at  least locally. 

4.4. Diagrammatic Definitions of Some Algebraic Structures. The ad- 
vantage  of  in t roducing algebraic definitions by commuta t ive  diagrams [21] 
is tha t  "dua l i ty"  can be established in a most  direct and visible way, i.e., in 
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the following diagram the concepts on the left-hand side induce those on the 
right-hand side and vice versa 

multiplication ~ comultiplication 

unit ~ counit 

associativity ~ coassociativity 

algebra ~ coalgebra 

and so on. We need these co-notions to define efficiently objects like Hopf  
algebra; they will be used, in turn, to define a super Lie group. In what 
follows, all diagrams are commutative. K denotes the ground field and also 
a trivial K-algebra. A and C are K-modules. L is the identity map in different 
contexts. All the mappings are assumed to be K-linear in this section. Define 

~2: `4 Q `4 ~ A (algebraic multiplication on .4) (4.60) 

~: K---~ A (the unit of A) (4.61) 

Then `4 is an algebra with a unit when equipped with f2 and ~7 such that 

A |  

K| Q A |  
(4.62) 

where can denotes the two canonical mappings: 

K |  

and 

a| a ~ A , K ~ K  

A associative if 

(4.63) 

(4.64) 

%| 
A|174 = A| 

o"I Jo 
A| , A 

f~ 

(4.65) 
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and commutative if 

A |  , A |  o] lo 
A . . . .  A 

(4.66) 

where r is the twist-morphism defined by (for graded algebras; ungraded 
algebras to be considered zero-graded) 

~-: a | b~--~ ( -  1)L~[Iblb | a with a, b cA (4.67) 

where a and b are homogeneous (nonhomogeneous elements are handled by 
their homogeneous components). 

A morphism (of K-algebras) q~ is a mapping such that 

A| , A| 

~| l ] ~| (4.68) 

A | 1 7 4 1 7 4  �9 A | 1 7 4 1 7 4  

The dual notions are defined by simply reversing all arrows in the preceding 
diagrams; all co-objects are introduced in this way. Define first 

A: C - +  C | C (comultiplication on C) (4.69) 

E : C --+ K (counit o f  C) (4.70) 

is also (most frequently) called an augmentation o f  C. Then C is a coalgebra 
with a counit when equipped with A and ~ such that 

C| 

K| A| C| (4.71) 

where can are defined by 

KC ~='~ K @ C 

Ke ~+ c | ~r e e C, K E K 

(4.72) 

(4.73) 
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Then a Hopf algebra is both an algebra and a coalgebra such that the co- 
multiplication is a morphism, i.e., H is a Hopf  algebra if {H, f2, ~7} is an 
algebra and {H, A, ~} is a coalgebra such that A is a morphism in the sense 
of  (4.68). Algebras and coalgebras can be graded in the same way. Hence a 
Hopf  algebra can have a graded structure in this sense. If  A is a graded 
algebra or coalgebra and if a, b E A are such that 

a.b = ( -  1)l~ul~lb.a (4.74) 

then we say that a and b eommute in A. This graded commutativity (4.74) is 
just the one defined by (4.66) and (4.67). 

In a coalgebra {C, A, E}, the so-called antipodal map plays a useful 
role in many cases. Let ~ E EndK C. Then cz is an antipodal map if for any 
x ~ C and Ax ---- ~ x~ • x~' we have 

~(xO'x~ x~. ~(x~) = e(x) (4.75) 

Further, if C is a super coalgebra, then a nonzero g E Co is grouplike if 

A: g~+ g | g (4.76) 

and we say that a e C is primitive to g if g is grouplike and if 

A: a ~-> g | a + a | g (4.77) 

These definitions are convenient for our discussion on super Lie groups in 
the next section. 

4.5. Super Lie Groups and Super Lie Algebras. For two supermanifolds 
(M, d )  and (M',  d ' ) ,  a morphism ~ is defined in terms of  the (commutative) 
superalgebras as 

a.: A'~, ~ AM (superalgebra horn) (4.78) 

For  technical reasons, we shall pay special attention to the subspace A* 
(of A*, the dual of A) of all elements that annihilate some ideal, of  A, of a 
finite codimension. 

The mapping f~+  (hvf)x ,  for any f E  A and x ~ M, defines an element 
7x in A*: 

7x: A -+ R (4.79) 

This permits us to attach A* to a point x ~ M in the following way: for any 
nonnegative integer K, define 

A~* =- {v[v cA*, v annihilates (ker yx) ~+1} (4.80) 
and 

A~ = [,_) A~* (4.81) 
/r 
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I t  is clear that Ax t is contained in A~ +it. One of the important  relations is 

A t = ( ~  A*~ (4.82) 
x E M  

where A~ is obviously a sub "super"  coalgebra of  A*. In fact, according to 
Kostant,  each A~ has a unique grouplike element ~'x [defined by (4.79)] 
and 

T(M,  d ) x  - { f i r  e A*~, r is primitive to yx} (4.83) 

i.e., the tangent space of the supermanifold at a point x is just the set of all 
elements primitive to ~'x- This statement of  Kostant  is a very elegant one. 
Because of the uniqueness of  the grouplike elements in this case, the corre- 
spondence x ~-> ~,, enables us to identify injeetively M as a subset of  A*, 
i.e., we may identify M as the grouplike elements in A t. 

Let a be a morphism from supermanifolds (M, d )  to (M' ,  d ' ) ,  i.e., 

a t : A' ~ A (4.84) 
The induced map 

defined by 
~t: A t __> A'* (4.85) 

g*: v~--> v o g.  (4.86) 

is a super coalgebra morphism. In fact, the grouplikeness is preserved under 
~*, i.e., 

o*: M---> M '  (4.87) 

Based on (4.85), we define: a super coalgebra morphism ~b from A* to A 't 
is said to be smooth if 

3 s u p e r m a n i f o l d m o r p h i s m ~ . : A ' - + A  suchthat~b = ~. (4.88) 

Then a supermanifold (M, d )  is a super Lie group (SLG) if A* is a graded 
H o p f  algebra with a smooth multiplication and a smooth antipodal map. 
The antipodal map is defined specifically by 

A* --> A t 
with 

x ~-> - x (4.89) 

An immediate consequence of the definition of SLG is this: if (G, ~4) 
is an SLG, then G is a group since its elements are grouplike and since there 
is an antipodal map. In fact G is an ordinary Lie group. Denote the unit 
element of  G (as a group) by e. Then T(G, d ) e  =- d~ is just A t (i.e., A'a), 
consisting of  all elements primitive to e. • is an SLA (super Lie algebra), 
to be called the Lie algebra of the SLG (G, ~') .  Decompose 

#" = ~0 + J l  (4.90) 
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Then the even part •0 = T(G)e is just the ordinary Lie algebra of a Lie 
group G. 

Universal Enveloping Algebra of a Super Lie Algebra. Universal envel- 
oping algebra is a useful tool for developing the representation theory 
of  a Lie algebra. The technique can be easily extended to the case of  an SLA 
without undue complications. 

Let L be an SLA over K with 

L = L0 Q L~ (even and odd parts) (4.91) 

Let B be any SAA (super associative algebra) over K, and denote by [B]' the 
SLA of  B with multiplication defined by (4.11). Let/3 be any SLA-hom from 
L to [B]'. Then the universal enveloping algebra (UEA) of L, to be denoted 
by UL, is defined as an SAA with an SLA-hom c~ from L to [UL]' such that 
the dotted arrow in the following diagram is filled by a unique SAA-hom/3'. 

L 

P 

[ B ] '  - -  

O. 
it [aLl I -  U L  

/ , ,  / 

. / /  
/ / 

B ~" 

(4.92) 

Hence, as for an ordinary Lie algebra, UL is unique (up to an SAA-iso) for 
an SLA L. The construction of UL is similar to that of an ordinary Lie 
algebra. 

UL = TL mod JL (4.93) 

where TL = ( ~ = o  | L and JL is the ideal in TL generated by elements 

x |  - ( -  1)lxltVly |  - Ix, y]', 

UL as a SAA has even and odd parts 

UL -= (UL)o @ (UL)I 

x, y E L (4.94) 

(4.95) 

The usual Poincar6-Birkhoff-Witt theorem is also true in this case [12], i.e., 
the set of all distinct lexicographically ordered monomials x~y ", i.e. (written 
in full) 

x~ 1 |  | x~, | y~l |  | y ~  m o d J L  (4.96) 

form a base of UL, where {xl, �9 �9 xp} is a base of L0 and {Yl . . . . .  y~} a base 
of L1. The appearance of x~ and y~. means that x, and xj are absent in that 
monomial. Actually/~, = 0 or 1 since y~ are odd-elements. Further, whether 
a monomial x~y ~ is even or odd depends only on the length of  tz (i.e., 
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1/~11 + " "  + [t*ql). Denote by ULo the sub-SAA (in UL) generated by 
Ke @ Lo under the quotient (i.e., mod JL), where e is the 1 of UL. Denote 
by VLo and VLI the K-subspaces (in UL) generated by e and monomials in 
y1 of even and odd lengths, respectively. Then we have 

(UL)o = VLo | ULo (4.97) 
and 

(UL)z = VL1 | ULo (4.98) 

The trace form (sometimes referred to as the supertraee form of an SLA L, 
with respect to a given representation y, is defined by 

(a, b)y = (a, b)y,o - (a, b)~,l (4.99) 

where (a, b)~.~ - Tr (v(a)]vy(b)lv,) , i = 0, 1, and V is the L-module corre- 
sponding to Y. ( )Iv, denotes the restriction to the subspace V~. Then the 
(super) Killing form is just the trace form with respect to the adjoint repre- 
sentation, to be denoted simply by ( , ). It is easy to check that a trace 
form is L-invariant, i.e., 

([a, c]', b)r = (a, [c, b]'), (4.100) 
o r  

([c, a]', b)~ + ( -  1)icLl~l(a, [c, b]')~ = 0 (4.101) 

Besides, a trace form is "super" symmetric, i.e., 

(a, b)~ = (-1)l~l[bi(b, a)y (4.102) 

If  the supertrace (with respect to a certain representation ~,,) is 
nondegenerate on an SLA L then we can define the second-order Casimir 
element by 

p + q  

( -  1)l~,lb, | b* (4.103) 
i = 1  

where b~ . . . .  , bp+~ is a base of L and {b*} is the dual base, i.e., 

(b,, b*)~ = 3,j (4.104) 

There are two different definitions of semisimplicity. We shall consider 
the following definition [15]: An SLA is semisimple if it  has no nontrivial 
solvable ideal. It is simple if it is not abelian and has no nontrivial ideal. 
Kac gave a classification [15, 22] of simple SLAs over the fields ~ and C. 
If  the base {bi}p+q is such that {b~}l ..... ~ spans Lo and {bi}p+z ..... ~ spans L~, 
then (4.103) becomes simply 

P P + q  

b ~ |  ~ by |  (4.105) 
t = 1  j = i o  + 1  

More generally, in a representation ~,, denote the supertrace metric by 

g~j -~ (b~, bj) r (4.106) 
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I f  det ]lg~iH ~ 0, then the jth order Casimir operator can be constructed in 
a way analogous to the ordinary Lie algebra, i.e., 

I~s = ~ str (b~l - �9 - b~j).b'l |  | b~ mod JL (4.107) 
t l , . . . , i j =  1 

where, in particular, 7' may be the adjoint representation and indices of b~ 
are raised by the Killing metric, e.g., 

b k - ~ gkmb m (n = p  + q) (4.108) 
r a = l  

and str is the supertrace, defined by 

str ( ) = Tr  (even part) - Yr (odd part) (4.109) 

where Tr  (even part) means restrictions to the even part of the representation 
space. It  can be shown that the Casimir elements commute with every 
element of  the SLA (i.e., they belong to the center of the SLA). However, 
their eigenvalues do not specify the representation for a simple SLA in 
general. Yet the irreducible representation of  a simple SLA can be specified 
by the highest weight. It is also true that the Killing form for a simple SLA 
is not necessarily nondegenerate; but if that is the case, then the simple SLA 
is of  "classical" type. Though Engel's theorem is still valid for an SLA, 
Lie's theorem for a solvable LA cannot be extended to a solvable SLA. 
Weyl's theorem and Levi-Malcev's theorem are not true for the SLA case. 

5. C O H O M O L O G I E S  OF SUPERMANIFOLDS A N D  
S U P E R  LIE A L G E B R A S  

5.1. Cohomology of Supermanifolds. For  a supermanifold (M, ~ ' )  and 
for any open U c M, Der Au has an SLA structure and a free At'-module. 
In fact 

U~--~ Der At, (5.1) 

defines a canonical presheaf of At'-modules; the module structure is, in fact, 
compatible with the restriction maps. In particular, if U splits, say {E~, Dr} 
splits ArT, then Der At" has a decomposition into a vector space direct sum. 

DerAt" = Der(AvlEt')  + Der (At'lOt') (5.2) 
with 

Der (At'lEt') - {[[[ ~ Der At', ~(Et') = 0} (5.3) 

and a similar definition for Der (Atrl Dt'). 
At this stage it is convenient to introduce a further notion of coordinate 

neighborhood: a (ordinary) coordinate neighborhood U is an d-coordina te  



On Algebras, Manifolds, and Fibre Bundles in Physics 535 

neighborhood if Air has an OCS. {r~, s~}~=~ ..... v.~=~ ..... q, is an sZ-coordinate 
system if {r~} and {s~} are ECS and OCS, respectively. It can be shown [19] 
that if U is an ~r neighborhood with an sZ-coordinate system 
{r~, sj}, then there exis t  uniquely 

such that 
O/~r~, O/Os~ e Der A v  (i = 1 . . . . .  p ; j  = 1 . . . . .  q) (5.4) 

(O/~sy)s~ = 1 ~r3y~ (5.5) 

(O/Os,)r, = 0 (5.6) 

where ~ ~ Der At: and a ~ Atr. Let 

ql a) - {fl]fl c T g  )*, ker fl ~ S~)} U 
and 

~ o~/(t) with ~gv ~ - A u  O~U ~ ~ U  
t = O  

if 

(5.12) 

(5.13) 

(5.14) 

~v  is a (7/@ 7/2)-graded commutative algebra over A~. In other words, 

~ (~) ) i  and fi, ~ (~(,t))~, (5.15) 

(8/~r~)rk = lvS~k, 

(~ /ar3s j  = o, 

Clearly, their homogeneous degrees are 

[O/~r d = 0 and [a/~sj[ = 1 (5.7) 

Thus every ~ ~ Der A~ has a unique expression 
q 

= ~ .  a,~/ar, + ~ b,a/asj, ai, bj ~ A u  (5.8) 
i = l  y= l  

which also corresponds to the decomposition (5.2), i.e., Der A~ is a f ree  
Art-module with a base given by (5.4). For each U we can now construct 
the tensor algebra 

t 

Tv -= t__~ ~ a(~v Der A v  (5.9) 

which is bigraded by Z @ 7/2 (the "tensorial" grading is 7/). Denote 
t 

T~ ) = (~) Der Au (5.10) 
A U  

Jtr = two-sided bigraded ideal in T~ generated by elements of the form 
| ~' + ( -  1)Jr162 ' Q ~ with ~, ~' ~ DerA~ being homogeneous elements. 

s~, - s~ c~ T~' (5.11) 

Both T~ ) and A~r itself have the structure of left Au-modules. Denote 
T( t ) ' k  Tg )* ~ Homatr (T(u t), Av) and similarly for J~)*. Then for any a ~ ~u , 

~,(C, , . . . ,  a. C~ . . . .  , ~) = ( - l )~ '%~:~q~f ' ( ,~ (C , ,  �9 �9  C~ . . . . .  5))  
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with i, i '  e Z2 and t, t '  e Z+ c Z, then 

tiff, = ( _  1)tt,+,,,fl,fi ~ (q/~+t,~),+,, (5.16) 

where the subscript  i in (5.15) refers to the ith supercomponent .  
The  exterior derivative can be defined by 

d: ~va/(~ ~ ~v~'(l~ (5.17) 
with 

(da)~ - Ca for  any ~ e Der  Atr (5.18) 

In  terms of  an d - c o o r d i n a t e  system (5.4), we have 

d = ~ (drO.(O/&,) + ~ (ds,).(O/Osj) (5.19) 
J 

I t  is not  difficult to show that  for  any a, b e A v  

d(a. b) = (da). b + a. (db) (5.20) 

which does not have any sign factor  in the second te rm as in the ordinary  
differentiable manifold  theory. Further ,  we note  tha t  

dri. dsj = - dsj. dh 

(~/~r,). ( ~ l ~ s j )  = ( ~ l ~ s 3 "  (~/ar,) 

( ~ / e s 3 . ( a / ~ s ~ )  = - ( a / ~ s ~ ) . ( a l e s 3  

because the (super) degrees are 

la/er, l = 0 and la/e~,l = 1 (5.21) 

The  interior product ie is defined as follows: let [ ~ Der  Ae  be homo-  
geneous. Then  we define 

i~: ~ud)l(t + i) -'-> ~U~/(t) 

by 
(r162 . . . .  , ~,) = (-1)'r ~1 . . . .  , ~t) (5.22) 

o~/<t +,) The  following facts are obvious.  for  any u e  ,~t~ �9 

Z-degree of  ir = - 1, lid = [~1 (5.23) 

(i=<)u = a. (ir (5.24) 

with ~ e Der  Av,  u ~ qg~-, a e Au.  The  Lie derivative is defined by 

s = d o i ~ + i ~ o d  (5.25) 
which leads to 

d o s162 = s162 o d (5.26) 

The  Poincar6 l emma  holds in a supermanifold:  let U be a connected con- 
tractible d - c o o r d i n a t e  ne ighborhood  on M. I f  - ~ , m  u ~ ~uv is closed then it is 
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exact, i.e., du = 0 implies u = dv for some v in ~vo'(t-1). Denote by q/~t)(d) 
the canonical presheaf 

U~+ ~,ct) (5.27) ~ U  

Then the exterior derivative yields a "flabby resolution" of the contrast 
sheaf [23] 

. . . - +  ~ ,"~(d)  - %  ~ , ,  + 1)(~,) _ + . . .  (5.28) 

We introduce here the following notation: 
H ( M ,  R): Cohomology of an ordinary manifold with coefficients in 
H(C):  Cohomology on a cochain complex C with given coboundary 

operators 

~ (M,  ~r ~ech cohomology with values in d 
H~ha~(M, d ) :  de Rham cohomology of (M, ~r defined by 

aq(M, ~r = H(~M(d) )  (5.29) 

By de Rham's theorem (applied to (5.28)), we have an isomorphism 

H~ n~ (M,  d )  ~ H(M,  R) ~ H ~ h ~ ( M )  (5.30) 

5.2. Cohomology of Super Lie Algebras. In the case of an ordinary 
Lie algebra L, it is advantageous to consider the cohomology with coefficients 
in an L-module (i.e., a representation space of L). See, for example, [6], 
p. 856. We shall also take this approach for SLAs. Let L be an SLA over K. 
I f  V is an L-supermodule, then 

V = V0 4- I11 (5.31) 

Denote by Fro(L, V) the set of all K-multilinear mappings from | L into 
V. Then ~ e Fro(L, V) is an exterior m-form if 

o~(... ,  x~, x i + l , . . . )  = - ( -  1)tx'll'q+ltoJ( . . . .  xi+l, xi . . . .  ) (5.32) 

Let Am(L , V) be the set of all exterior m-forms. Denote 

A(L, V) =- @ Am(L, V) (5.33) 
r a = 0  

A is a superspace. We now proceed to define the exterior derivative on A 

d: Am -+ Am+l (5.34) 
For m > 0, we define 

(do~)(x~ . . . .  , Xm + 1) =- 
m + l  

~, ( -  1)",x,  . ( o 4 x l  . . . .  , e:,, . . . ,  Xm+ l ) )  
4 = 1  

+ ~ ~ ( -  a)",~o([x, x;l, x~ . . . . .  ~ , .  �9  ~ , . . . ,  Xm+~)  
J 

(1 < J) 

(5.35) 
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where 2/means deletion of x~ and 

i - 1  

ch -- ( i -  1) + Ix, I Ix;I 
J = l  

i - 1  

fl,j = (i + j )  + (Ix, l + Ix, I) ~ lx l + Ix, I 
k = l  

(5.36) 

J -1  
lxkl (5.37) 

k=(+l 

For m = 0, we identify Ao(L, V) with V since the former sends K1 into V 
under a K-homomorphism. Hence we define d: A0 -+ A1 by 

(dv)x =- (-1)lxll~lx.v, v e  V , x ~ L  (5.38) 

The reason for defining cq and/3~j as given in (5.36) and (5.37) is based 
on moving the ith term, e.g., to the leftmost position; each step involves a 
factor ( -  1)lx, llx~ I, etc. 

The tensor product A m | A n is defined by 

(Iz Q v ) ( x l ,  . . . ,  X m + , )  =- ( -  1)"l~$=ll~'ltz(xl,..., Xm) 

@ V ( X m  + 1 . . . . .  Xra+n) (5.39) 

The exterior product between Am and A n is defined by 

1 
/z A v ---- m !n! ~ p(tz | v) (5.40) 

where P(w) is defined by 

(P~o)(xl . . . . .  xk) = ( -  1)v*+eoJ(xp-lm . . . . .  xp-l(m>) (5.41) 

P is a permutation and P* is induced by P only on the odd-elements of 
(x~, . . . ,  xk). P* and P are signs of respective permutations. 

The interior product, for w e Am, is defined by 

ixr-O(Xl . . . . .  Xm-1) =--- (--1)lxll~ Xl . . . . .  Xm-1) for m > 0 

The Lie derivative is defined by 

with 

ixV ~ 0 

( ~ x O J ) ( X 1  . . . .  , Xm) ~ X'(OJ(X1, . . . , Xm)) 

- ~ ( -  l)~'oJ(xl,...,  [x, xd . . . .  , Xm) 
i= l  

= Ixl + Y. Ix;l 
] = 1  

(5.42) 

(5.43) 

(5.44) 
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I t  is not difficult to verify the following properties: 

d 2 = O, s = d o i x  + Gr 

/z A v =  (--1)l"llvl+m~v A /~ if /z e A=, v e A,  

d(/z A v) = (d/z) A v + (--1)'~/~ A (dr) (5.45) 

,'o.,,o = a .  ( , ' . o 4  

The cochain complex A(L, V) together with the exterior derivatives (as 
coboundary operators) now defines the cohomology of the SLA L with 
coefficients in the L-module V, as in the usual construction of a cohomology 
theory. One of  the results [24] is this: for a semisimple SLA L and a non- 
trivial simple L-module V with nondegenerate (super) trace form, the nth 
cohomology group H'~(L, V) vanishes. 

6. AN I N S I G H T  TO GENER AL IZATIONS OF 
LIE  ALGEBRAS 

It  is natural to ask how Lie algebra can be sensibly generalized beyond 
the super or 7/@ Z2 grading. I would like to proceed with an analysis of  
basic axioms involved. To avoid unnecessary confusion, I will now introduce 
a different notation. This is because the usual bracket [ , ] is inadequate on 
two accounts. First, a succession of brackets is inconvenient both to write as 
well as to read. Second, there is no distinction between the Lie product and 
the true commutator ;  the latter is defined only when an associative (or 
non-Lie) product makes sense. We now take x * y to be the Lie product in 
an ordinary Lie algebra, and x * '  y for the super Lie algebra. [ , ] and [ , ]' 
now represent the true bracket and graded bracket, a o b -  b o a and 
a o b - ( -  1)L~llbtb o a, when they are well defined. 

We first take a close look at the Jacobi identity for an ordinary Lie 
algebra L 

x * ( y * z )  + y * ( z * x )  + z * ( x * y )  = 0 (6.1) 

and rewrite it in adjoint form 

((adj x) o (adj y) - (adj y) o (adj x)}z - (adj (x * y))z = 0 (6.2) 
or  

[adj x, adj y] = adj (x * y) (6.3) 

since z is arbitrary and adjoints are endomorphisms on the vector space L. 
However, we can reverse the argument and use (6.3) as the axiom to replace 
the Jacobi identity (6.1) and also assume that on the left-hand side of  (6.3) 
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the "true" bracket is not yet defined (though the adjoint is defined in the 
conventional way). Then we see that the choice 

[a,b] - a o b - b o a  (6.4) 

for a and b in an associative algebra, in general, reduces (6.3) to (6.1), the 
Jacobi identity. This game can also be played for a GLA. In this case, 
equation (3.6) in the new notation is 

( -  1)lxlr~l(x * '  y) * '  z = 0 (6.5) 
oyo  

which can be written 

(adj x) o (adjy) = adj ( x , ' y )  + (-1)lxllUl(adj y) o (adj x) (6.6) 
or 

[adj x, adj y]' = adj (x , ' y )  (6.7) 

In other words, we can replace (6,5) by (6.7). It is most striking that (6.3) 
and (6.7) take exactly the same form. This not only shows why GLA is so 
natural but also shows that "adjoint" respects the Lie product (or graded 
Lie product). This latter property is very crucial in defining morphisms, and 
representation theory (L-modules) depends on it. The burden of signs in 
(6.5) is buried in (6.7) without ceremony. We now take a further step. Take 
(6.7) as an axiom to replace the graded Jacobi identity, and let the left-hand 
side of (6.7) be undefined yet; it should be defined in a way that recovers 
the graded Jacobi identity. 

The graded antisymmetry says 

x * '  y = - ( -  1)rxtluly * '  x (6.8) 

To recover (6.5) from (6.7), we now define 

[a, b] '  = a o b - ( -  1)tattbEb o a ( 6 . 9 )  

when a and b are elements in an associative (or some non-Lie) algebra such 
that the right-hand side of (6.9) makes sense. 

We now proceed to consider a possible generalization of a Lie algebra. 
First, bilinearity of an algebraic product requires a g e n e r a l i z e d  a n t i s y m m e t r y  

to look like (write the "new" product a * b) 

x �9 y = f ( x ,  y ) y  * x (6.10) 

where fmaps  L x L into K (L denotes the "generalized" Lie algebra over a 
field K of characteristic zero). Note t h a t f i s  not required to be bilinear. An 
iteration of (6.10) shows that 

f ( x ,  y ) f ( y ,  x) = 1, for any x, y e L (6.11) 



On Algebras, Manifolds, and Fibre Bundles in Physics 541 

must be satisfied. In particular, ( f (x ,  x)) 2 = 1. Since we do not know what 
the generalized Jacobi identity should look like, there is no reason why we 
cannot use (6.3) and (6.7) as guides, i.e., we require 

[adj x, adj y]* = adj (x �9 y) (6.12) 

and define 
[a, b]* - a o b + f ( a ,  b)b o a (6.13) 

imitating the previous cases. In this way, the "new" Jacobi identity looks 
like 

x , (y  , z) - (x , y) , z + f ( x ,  y ) y  , (x * z) = 0 (6.14) 

Then, to narrow the generality, one can impose all kinds of  conditions on f ,  
as long as (6.11) is satisfied, to define different classes of  new "generalized" 
Lie algebras. A recent at tempt by V. Rittenberg and D. Wyler [25] is a 
special case of  this formalism, done in terms of generators. Clearly, generators 
can be labeled by any index set. Then "gradings" of  all sorts can be imposed 
to define a generalized graded Lie algebra. In fact, as we mentioned earlier 
in connection with the generalized (or signed) Whitehead product, grading 
conditions can be sensibly relaxed as given by equation (3.75). 
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